We invent daily and naturally and we do so non-linearly, illogically and emotionally and we reflect on these inventions - some we have good experiences with, some we don't and some we are not conscious of constructing at all. However, it is the reflection on how we invent where we can best develop an expertise, capability or professionalism in whatever endeavour we work at, not through theoretical constructs.
Innovation systems or theories per see don't produce outcomes. Innovation systems simply provide a framework. It is the invention, the ideas that develop and occur within those systems or processes that provide the outcomes.
In that context I recently came across an article by Malcolm Gladwell, author of the Tipping Point and Blink that demonstrates this argument well.
Who says big ideas are rare?by Malcolm Gladwell May 12, 2008 The New Yorker
Nathan Myhrvold met Jack Horner on the set of the “
Myhrvold is of Nordic extraction, and he looks every bit the bearded, fair-haired Viking—not so much the tall, ferocious kind who raped and pillaged as the impish, roly-poly kind who stayed home by the fjords trying to turn lead into gold. He is gregarious, enthusiastic, and nerdy on an epic scale. He graduated from high school at fourteen. He started Microsoft’s research division, leaving, in 1999, with hundreds of millions. He is obsessed with aperiodic tile patterns. (Imagine a floor tiled in a pattern that never repeats.) When Myhrvold built his own house, on the shores of Lake Washington, outside
“What you do on a dinosaur expedition is you hike and look at the ground,” Myhrvold explains. “You find bones sticking out of the dirt and, once you see something, you dig.” In
Once, a team member came across a bone sticking out from the bottom of a recently eroded cliff. It took Horner’s field crew three summers to dig it out, and when they broke the bone open a black, gooey substance trickled out—a discovery that led Myhrvold and his friend Lowell Wood on a twenty-minute digression at dinner one night about how, given enough goo and a sufficient number of chicken embryos, they could “make another one.”
There was also Myhrvold’s own find: a line of vertebrae, as big as apples, just lying on the ground in front of him. “It was seven years ago. It was a bunch of bones from a fairly rare dinosaur called a thescelosaurus. I said, ‘Oh, my God!’ I was walking with Jack and my son. Then Jack said, ‘Look, there’s a bone in the side of the hill.’ And we look at it, and it’s a piece of a jawbone with a tooth the size of a banana. It was a T. rex skull. There was nothing else it could possibly be.”
People weren’t finding dinosaur bones, and they assumed that it was because they were rare. But—and almost everything that Myhrvold has been up to during the past half decade follows from this fact—it was our fault. We didn’t look hard enough.
Myhrvold gave the skeleton to the Smithsonian. It’s called the N. rex. “Our expeditions have found more T. rex than anyone else in the world,” Myhrvold said. “From 1909 to 1999, the world found eighteen T. rex specimens. From 1999 until now, we’ve found nine more.” Myhrvold has the kind of laugh that scatters pigeons. “We have dominant T. rex market share.”
In 1874, Alexander Graham Bell spent the summer with his parents in
One day,
A large tree had blown down here, creating a natural and completely private belvedere, which [he] had dubbed his “dreaming place.” Slouched on a wicker chair, his hands in his pockets, he stared unseeing at the swiftly flowing river below him. Far from the bustle of
In that moment,
In 1999, when Nathan Myhrvold left Microsoft and struck out on his own, he set himself an unusual goal. He wanted to see whether the kind of insight that leads to invention could be engineered. He formed a company called Intellectual Ventures. He raised hundreds of millions of dollars. He hired the smartest people he knew. It was not a venture-capital firm. Venture capitalists fund insights—that is, they let the magical process that generates new ideas take its course, and then they jump in. Myhrvold wanted to make insights—to come up with ideas, patent them, and then license them to interested companies. He thought that if he brought lots of very clever people together he could reconstruct that moment by the
One rainy day last November, Myhrvold held an “invention session,” as he calls such meetings, on the technology of self-assembly. What if it was possible to break a complex piece of machinery into a thousand pieces and then, at some predetermined moment, have the machine put itself back together again? That had to be useful. But for what?
The meeting, like many of Myhrvold’s sessions, was held in a conference room in the Intellectual Ventures laboratory, a big warehouse in an industrial park across Lake Washington from
Chairing the meeting was Casey Tegreene, an electrical engineer with a law degree, who is the chief patent counsel for I.V. He stood at one end of the table. Myhrvold was at the opposite end. Next to him was Edward Jung, whom Myhrvold met at Microsoft. Jung is lean and sleek, with closely cropped fine black hair. Once, he spent twenty-two days walking across
“You know how musicians will say, ‘My teacher was So-and-So, and his teacher was So-and-So,’ right back to Beethoven?” Myhrvold says. “So
The chairman of the chemistry department at Stanford, Richard Zare, had flown in for the day, as had Eric Leuthardt, a young neurosurgeon from
Tegreene began. “There really aren’t any rules,” he told everyone. “We may start out talking about refined plastics and end up talking about shoes, and that’s O.K.”
He started in on the “prep.” In the previous weeks, he and his staff had reviewed the relevant scientific literature and recent patent filings in order to come up with a short briefing on what was and wasn’t known about self-assembly. A short BBC documentary was shown, on the early work of the scientist Lionel Penrose. Richard Zare passed around a set of what looked like ceramic dice. Leuthardt drew elaborate diagrams of the spine on the blackboard. Self-assembly was very useful in eye-of-the-needle problems—in cases where you had to get something very large through a very small hole—and Leuthardt wondered if it might be helpful in minimally invasive surgery.
The conversation went in fits and starts. “I’m asking a simple question and getting a long-winded answer,” Jung said at one point, quietly. Wood played the role of devil’s advocate. During a break, Myhrvold announced that he had just bought a CAT scanner, on an Internet auction site.
“I put in a minimum bid of twenty-nine hundred dollars,” he said. There was much murmuring and nodding around the room. Myhrvold’s friends, like Myhrvold, seemed to be of the opinion that there is no downside to having a CAT scanner, especially if you can get it for twenty-nine hundred dollars.
Before long, self-assembly was put aside and the talk swung to how to improve X-rays, and then to the puzzling phenomenon of soldiers in Iraq who survive a bomb blast only to die a few days later of a stroke. Wood thought it was a shock wave, penetrating the soldiers’ helmets and surging through their brains, tearing blood vessels away from tissue. “
Leuthardt, the neurosurgeon, thought that Wood’s argument was unconvincing. The two went back and forth, arguing about how you could make a helmet that would better protect soldiers.
“We should be careful how much mental energy we spend on this,” Leuthardt said, after a few minutes.
Wood started talking about the particular properties of bullets with tungsten cores.
“Shouldn’t someone tell the Pentagon?” a voice said, only half jokingly, from the back of the room.
How useful is it to have a group of really smart people brainstorm for a day? When Myhrvold started out, his expectations were modest. Although he wanted insights like Alexander Graham Bell’s, Bell was clearly one in a million, a genius who went on to have ideas in an extraordinary number of areas—sound recording, flight, lasers, tetrahedral construction, and hydrofoil boats, to name a few. The telephone was his obsession. He approached it from a unique perspective, that of a speech therapist. He had put in years of preparation before that moment by the
But then, in August of 2003, I.V. held its first invention session, and it was a revelation. “Afterward, Nathan kept saying, ‘There are so many inventions,’ ” Wood recalled. “He thought if we came up with a half-dozen good ideas it would be great, and we came up with somewhere between fifty and a hundred. I said to him, ‘But you had eight people in that room who are seasoned inventors. Weren’t you expecting a multiplier effect?’ And he said, ‘Yeah, but it was more than multiplicity.’ Not even Nathan had any idea of what it was going to be like.”
The original expectation was that I.V. would file a hundred patents a year. Currently, it’s filing five hundred a year. It has a backlog of three thousand ideas. Wood said that he once attended a two-day invention session presided over by Jung, and after the first day the group went out to dinner. “So Edward took his people out, plus me,” Wood said. “And the eight of us sat down at a table and the attorney said, ‘Do you mind if I record the evening?’ And we all said no, of course not. We sat there. It was a long dinner. I thought we were lightly chewing the rag. But the next day the attorney comes up with eight single-spaced pages flagging thirty-six different inventions from dinner. Dinner.”
And the kinds of ideas the group came up with weren’t trivial. Intellectual Ventures just had a patent issued on automatic, battery-powered glasses, with a tiny video camera that reads the image off the retina and adjusts the fluid-filled lenses accordingly, up to ten times a second. It just licensed off a cluster of its patents, for eighty million dollars. It has invented new kinds of techniques for making microchips and improving jet engines; it has proposed a way to custom-tailor the mesh “sleeve” that neurosurgeons can use to repair aneurysms.
Bill Gates, whose company, Microsoft, is one of the major investors in Intellectual Ventures, says, “I can give you fifty examples of ideas they’ve had where, if you take just one of them, you’d have a startup company right there.” Gates has participated in a number of invention sessions, and, with other members of the Gates Foundation, meets every few months with Myhrvold to brainstorm about things like malaria or H.I.V. “Nathan sent over a hundred scientific papers beforehand,” Gates said of the last such meeting. “The amount of reading was huge. But it was fantastic. There’s this idea they have where you can track moving things by counting wing beats. So you could build a mosquito fence and clear an entire area. They had some ideas about super-thermoses, so you wouldn’t need refrigerators for certain things. They also came up with this idea to stop hurricanes. Basically, the waves in the ocean have energy, and you use that to lower the temperature differential. I’m not saying it necessarily is going to work. But it’s just an example of something where you go, Wow.”
One of the sessions that Gates participated in was on the possibility of resuscitating nuclear energy. “Teller had this idea way back when that you could make a very safe, passive nuclear reactor,” Myhrvold explained. “No moving parts. Proliferation-resistant. Dead simple. Every serious nuclear accident involves operator error, so you want to eliminate the operator altogether.
The plant, as they conceived it, would produce something like one to three gigawatts of power, which is enough to serve a medium-sized city. The reactor core would be no more than several metres wide and about ten metres long. It would be enclosed in a sealed, armored box. The box would work for thirty years, without need for refuelling. Wood’s idea was that the box would run on thorium, which is a very common, mildly radioactive metal. (The world has roughly a hundred-thousand-year supply, he figures.) Myhrvold’s idea was that it should run on spent fuel from existing power plants. “Waste has negative cost,” Myhrvold said. “This is how we make this idea politically and regulatorily attractive. Lowell and I had a month long no-holds-barred nuclear-physics battle. He didn’t believe waste would work. It turns out it does.” Myhrvold grinned. “He concedes it now.”
It was a long-shot idea, easily fifteen years from reality, if it became a reality at all. It was just a tantalizing idea at this point, but who wasn’t interested in seeing where it would lead? “We have thirty guys working on it,” he went on. “I have more people doing cutting-edge nuclear work than General Electric. We’re looking for someone to partner with us, because this is a huge undertaking. We took out an ad in Nuclear News, which is the big trade journal. It looks like something from The Onion: ‘Intellectual Ventures interested in nuclear-core designer and fission specialist.’ And, no, the F.B.I. hasn’t come knocking.” He lowered his voice to a stage whisper. “
It was the dinosaur-bone story all over again. You sent a proper search team into territory where people had been looking for a hundred years, and, lo and behold, there’s a T. rex tooth the size of a banana. Ideas weren’t precious. They were everywhere, which suggested that maybe the extraordinary process that we thought was necessary for invention—genius, obsession, serendipity, epiphany—wasn’t necessary at all.
In June of 1876, a few months after he shouted out, “Mr. Watson, come here,” Alexander Graham Bell took his device to the World’s Fair in
Soon a steady stream of portly, middle-aged men were clambering into the gallery, stripping off their jackets, and bending their ears to the receiver. “For an hour or more,” Willie remembered, “all took turns in talking and listening, testing the line in every possible way, evidently looking for some trickery, or thinking that the sound was carried through the air. . . . It seemed to be nearly all too wonderful for belief.”
In order to get one of the greatest inventions of the modern age, in other words, we thought we needed the solitary genius. But if Alexander Graham Bell had fallen into the Grand River and drowned that day back in
This phenomenon of simultaneous discovery—what science historians call “multiples”—turns out to be extremely common. One of the first comprehensive lists of multiples was put together by William Ogburn and Dorothy Thomas, in 1922, and they found a hundred and forty-eight major scientific discoveries that fit the multiple pattern.
“There were four independent discoveries of sunspots, all in 1611; namely, by Galileo in
The law of the conservation of energy, so significant in science and philosophy, was formulated four times independently in 1847, by Joule, Thomson, Colding and Helmholz. They had been anticipated by Robert Mayer in 1842. There seem to have been at least six different inventors of the thermometer and no less than nine claimants of the invention of the telescope. Typewriting machines were invented simultaneously in
For Ogburn and Thomas, the sheer number of multiples could mean only one thing: scientific discoveries must, in some sense, be inevitable. They must be in the air, products of the intellectual climate of a specific time and place. It should not surprise us, then, that calculus was invented by two people at the same moment in history. Pascal and Descartes had already laid the foundations. The Englishman John Wallis had pushed the state of knowledge still further.
Of course, that is not the way
Thus the biographer Robert Bruce, in “
In “The Telephone Gambit,” Seth Shulman makes the opposite case. Just before
But surely Gray and
Last March, Myhrvold decided to do an invention session with Eric Leuthardt and several other physicians in
“
How did Wood come to this conclusion? He had run across a stray fact in a recent issue of The New England Journal of Medicine. “It was an article that talked about, at one point, the number of cancer cells per millilitre of blood,” he said. “And I looked at that figure and said, ‘Something’s wrong here. That can’t possibly be true.’ The number was incredibly high. Too high. It has to be one cell in a hundred litres, not what they were saying—one cell in a millilitre. Yet they spoke of it so confidently. I clicked through to the references. It was a commonplace. There really were that many cancer cells.”
Wood did some arithmetic. He knew that human beings have only about five litres of blood. He knew that the heart pumps close to a hundred millilitres of blood per beat, which means that all of our blood circulates through our bloodstream in a matter of minutes. The New England Journal article was about metastatic breast cancer, and it seemed to Wood that when women die of metastatic breast cancer they don’t die with thousands of tumors. The vast majority of circulating cancer cells don’t do anything.
“It turns out that some small per cent of tumor cells are actually the deadly ones,” he went on. “Tumor stem cells are what really initiate metastases. And isn’t it astonishing that they have to turn over at least ten thousand times before they can find a happy home? You naïvely think it’s once or twice or three times. Maybe five times at most. It isn’t. In other words, metastatic cancer—the brand of cancer that kills us—is an amazingly hard thing to initiate. Which strongly suggests that if you tip things just a little bit you essentially turn off the process.”
That was the idea that Wood presented to the room in
Wood was a physicist, not a doctor, but that wasn’t necessarily a liability, at this stage. “People in biology and medicine don’t do arithmetic,” he said. He wasn’t being critical of biologists and physicians: this was, after all, a man who read medical journals for fun. He meant that the traditions of medicine encouraged qualitative observation and interpretation. But what physicists do—out of sheer force of habit and training—is measure things and compare measurements, and do the math to put measurements in context. At that moment, while reading The New England Journal, Wood had the advantages of someone looking at a familiar fact with a fresh perspective.
That was also why Myhrvold had wanted to take his crew to
Insight could be orchestrated: that was the lesson. If someone who knew how to make a filter had a conversation with someone who knew a lot about cancer and with someone who read the medical literature like a physicist, then maybe you could come up with a cancer treatment. It helped as well that Casey Tegreene had a law degree, Lowell Wood had spent his career dreaming up weapons for the government, Nathan Myhrvold was a ball of fire, Edward Jung had walked across
There were drawbacks to this approach, of course. The outsider, not knowing what the insider knew, would make a lot of mistakes and chase down a lot of rabbit holes. Myhrvold admits that many of the ideas that come out of the invention sessions come to naught. After a session, the Ph.D.s on the I.V. staff examine each proposal closely and decide which ones are worth pursuing. They talk to outside experts; they reread the literature. Myhrvold isn’t even willing to guess what his company’s most promising inventions are. “That’s a fool’s game,” he says. If ideas are cheap, there is no point in making predictions, or worrying about failures, or obsessing, like
In his living room, Myhrvold has a life-size T. rex skeleton, surrounded by all manner of other dinosaur artifacts. One of those is a cast of a nest of oviraptor eggs, each the size of an eggplant. You’d think a bird that big would have one egg, or maybe two. That’s the general rule: the larger the animal, the lower the fecundity. But it didn’t. For Myhrvold, it was one of the many ways in which dinosaurs could teach us about ourselves. “You know how many eggs were in that nest?” Myhrvold asked. “Thirty-two.”
In the nineteen-sixties, the sociologist Robert K. Merton wrote a famous essay on scientific discovery in which he raised the question of what the existence of multiples tells us about genius. No one is a partner to more multiples, he pointed out, than a genius, and he came to the conclusion that our romantic notion of the genius must be wrong. A scientific genius is not a person who does what no one else can do; he or she is someone who does what it takes many others to do. The genius is not a unique source of insight; he is merely an efficient source of insight. “Consider the case of Kelvin, by way of illustration,” Merton writes, summarizing work he had done with his
After examining some 400 of his 661 scientific communications and addresses . . . Dr. Elinor Barber and I find him testifying to at least 32 multiple discoveries in which he eventually found that his independent discoveries had also been made by others. These 32 multiples involved an aggregate of 30 other scientists, some, like Stokes, Green, Helmholtz, Cavendish, Clausius, Poincaré, Rayleigh, themselves men of undeniable genius, others, like Hankel, Pfaff, Homer Lane, Varley and Lamé, being men of talent, no doubt, but still not of the highest order. . . . For the hypothesis that each of these discoveries was destined to find expression, even if the genius of Kelvin had not obtained, there is the best of traditional proof: each was in fact made by others. Yet Kelvin’s stature as a genius remains undiminished. For it required a considerable number of others to duplicate these 32 discoveries which Kelvin himself made.
This is, surely, what an invention session is: it is Hankel, Pfaff, Homer Lane, Varley, and Lamé in a room together, and if you have them on your staff you can get a big chunk of Kelvin’s discoveries, without ever needing to have Kelvin—which is fortunate, because, although there are plenty of Homer Lanes, Varleys, and Pfaffs in the world, there are very few Kelvins.
Merton’s observation about scientific geniuses is clearly not true of artistic geniuses, however. You can’t pool the talents of a dozen Salieris and get Mozart’s Requiem. You can’t put together a committee of really talented art students and get Matisse’s “La Danse.” A work of artistic genius is singular, and all the arguments over calculus, the accusations back and forth between the
This is a confusing distinction, because we use the same words to describe both kinds of inventors, and the brilliant scientist is every bit as dazzling in person as the brilliant playwright. The unavoidable first response to Myhrvold and his crew is to think of them as a kind of dream team, but, of course, the fact that they invent as prodigiously and effortlessly as they do is evidence that they are not a dream team at all. You could put together an Intellectual Ventures in
The statistician Stephen Stigler once wrote an elegant essay about the futility of the practice of eponymy in science—that is, the practice of naming a scientific discovery after its inventor. That’s another idea inappropriately borrowed from the cultural realm. As Stigler pointed out, “It can be found that Laplace employed Fourier Transforms in print before Fourier published on the topic, that Lagrange presented Laplace Transforms before Laplace began his scientific career, that Poisson published the Cauchy distribution in 1824, twenty-nine years before Cauchy touched on it in an incidental manner, and that Bienaymé stated and proved the Chebychev Inequality a decade before and in greater generality than Chebychev’s first work on the topic.” For that matter, the Pythagorean theorem was known before Pythagoras; Gaussian distributions were not discovered by Gauss. The examples were so legion that Stigler declared the existence of Stigler’s Law: “No scientific discovery is named after its original discoverer.” There are just too many people with an equal shot at those ideas floating out there in the ether. We think we’re pinning medals on heroes. In fact, we’re pinning tails on donkeys.
Stigler’s Law was true, Stigler gleefully pointed out, even of Stigler’s Law itself. The idea that credit does not align with discovery, he reveals at the very end of his essay, was in fact first put forth by Merton. “We may expect,” Stigler concluded, “that in years to come, Robert K. Merton, and his colleagues and students, will provide us with answers to these and other questions regarding eponymy, completing what, but for the Law, would be called the Merton Theory of the reward system of science.”
In April, Lowell Wood was on the East Coast for a meeting of the Hertz Foundation fellows in Woods Hole. Afterward, he came to
He then wandered into the Vertebrate Origins gallery and, for the hundredth time, wondered about the strange openings that Archosauria had in front of their eyes and behind their nostrils. They had to be for breathing, didn’t they? He tried to come up with an alternate hypothesis, and couldn’t—but then he couldn’t come up with a way to confirm his own hunch, either. It was a puzzle. Perhaps someday he would figure it out. Perhaps someone else would. Or perhaps someone would find another skeleton that shed light on the mystery. Nathan Myhrvold and Jack Horner had branched out from